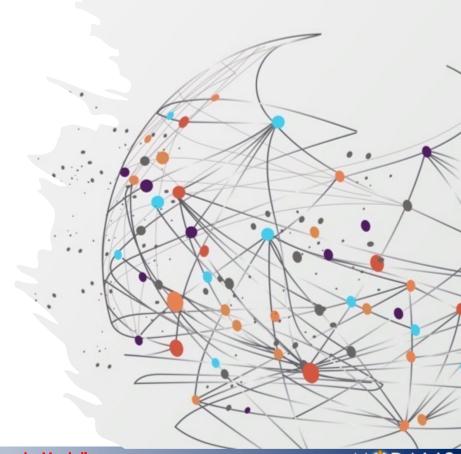
2025年12月期 第3四半期 決算説明会



本資料の取扱について

- 本資料は、関連情報のご案内のみを目的として当社が作成したものであり、日本国、米国またはそれ以外の一切の法域における有価証券の取得勧誘または売付け勧誘等を構成するものではありません。米国、日本国またはそれ以外の一切の法域において、適用法令に基づく登録もしくは届出またはこれらの免除を受けずに、当社の有価証券の募集または販売を行うことはできません。
- 本資料に記載されている情報は、現時点の経済、規制、市場等の状況を前提としていますが、その真実性、正確性または完全性について、当社は何ら表明または保証するものではありません。本資料に記載された情報は、事前に通知することなく変更されることがあります。本資料及びその記載内容について、当社の書面による事前の同意なしに、何人も、他の目的で公開または利用することはできません。本資料に記載された将来の業績に関する記述は、将来情報です。将来情報には、「信じる」、「予期する」、「計画する」、「戦略をもつ」、「期待する」、「見はする」、「予期する」または「可能性がある」というような表現及び将来の事業活動、業績、出来事や状況を説明するその他類似した表現を含みます(これらに限立されるものではありません)。将来情報は、現在入手可能な情報をもとにした当社の経営陣の判断に基づいています。そのため、これらの将来情報は、様々なリスクや不確定要素に左右され、実際の業績は将来情報に全面的に依拠することのないようご注意ください。
- 本資料の作成にあたり、当社は当社が入手可能なあらゆる情報の真実性、正確性 や完全性に依拠し、前提としています。当社はかかる情報の真実性、正確性あるい は完全性について独自の検証を行っておらず、その真実性、正確性あるいは完全性 について、当社は何ら表明及び保証するものではありません。

Modalis について

MODALIS Therapeutics

ミッション: 全ての命に光を

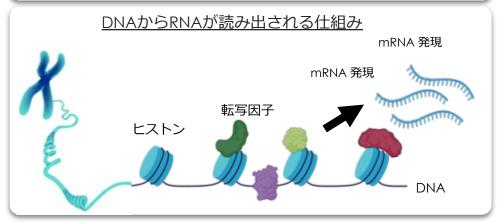
・希少疾患治療を目的としたエピゲノム編集による遺伝子治療薬を開発するバイオテック企業

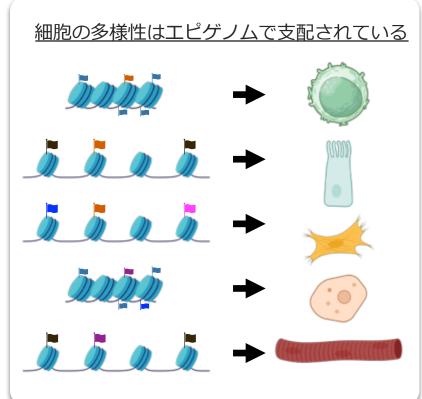
・上場 2020 (グロース)

• 本社:東京

• R&D: マサチューセッツ州ウォルサム市

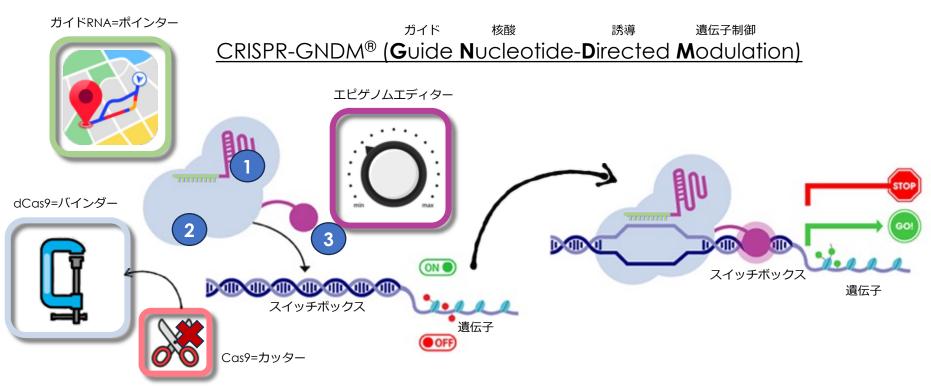
エピゲノム


遺伝子が、いつ、どこで、どれだけ読み出されるかを決定づけ、細胞やその機能などの多様性をつくり出す仕組み



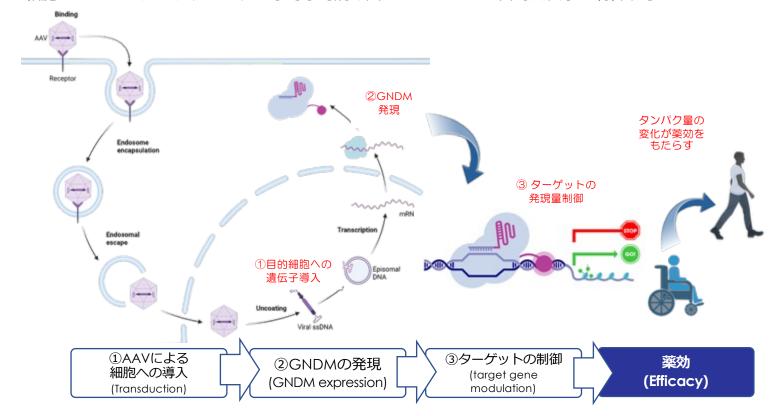
37兆個の細胞

2万の遺伝子 200種類の細胞 100を超える臓器


でもたった1セットの設計図

CRISPR-GNDM®

GNDMはエピゲノムを書き換えて、目的の遺伝子の発現量制御を行う

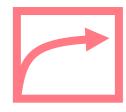


CRISPR-GNDM® は①位置決めをする「ガイドRNA(gRNA)」、②DNAへの結合デバイスである「dCas9」、③エピゲノムの編集を行う「エディター」で構成され、遺伝子の発現のオン・オフを自由に制御する

モダリスのコアコンピタンスと協業の状況 遺伝子治療のためには薬効の本体であるペイロードとそれを目的組織に運ぶカーゴ(ベクター)が重要 薬効 MODALIS **GENIXXCURE** プラットフォーム(IP) ペイロード カーゴ **⊠**BROAD =CRISPR-GNDM® AAV LNP ターゲット策定 送達 創薬エンジン AAV ベクター **GNDM** GINKGO BIOWORKS 1

薬剤投与から薬効までの3段階

AAVが細胞にGNDMを運び、タンパクとしてして読み出されたGNDMが目的遺伝子を制御する


CRISPR-GNDM® は医療に革命を起こす新技術

1回の投与で病態改善効果が持続

CRISPR-GNDM® 技術のもたらしうる効果

単回投与 反復投与を 必要としない

効果が持続 数年あるいは数十年 に渡って効果が持続

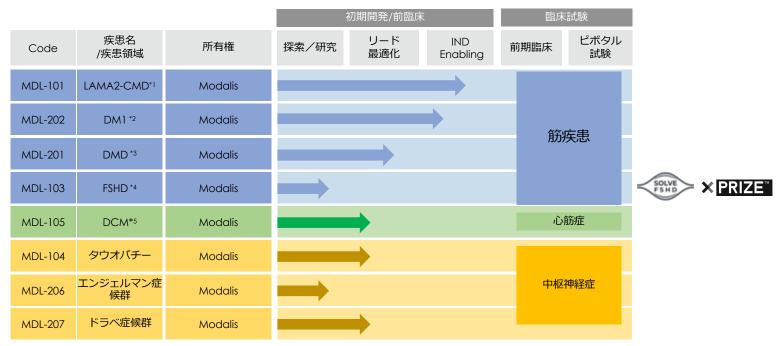
病態を改善 対症療法ではなく 治療を実現

エピゲノム編集の競合環境

エピゲノム編集のモメンタムは維持されている

企業	設立年	投資ステージ	プラットフォーム	パイプライン/対象疾患	開発ステージ
MODALIS	2016	公開	CRISPR-GNDM x AAV	MDL-101/LAMA2-CMDMDL-201/DMD遺伝子活性化	IND enabling試験中
Tune	2020	シリーズB (\$175M, 2025)	DNMT-KRAB 融合 dCas9 x LNP	TUNE-401/B型肝炎 遺伝子抑制化	Clinical Ph1が香港、NZおよび モルドバでCTA承認
nChroma	2021	Chromaと Nvelopが合併 (Dec 2024)	DNMT-KRAB 融合 dCas9 x LNP	CRMA-1001 PCSK9高コレス テロール血症 遺伝子抑制化	Preclinical
Epicrispr	2022	シリーズB (\$68M, 2025年 3月)	DNMT融合Cas12f x AAVrh74	EPI-321/FSHD 遺伝子抑制化	FDAよりINDクリアランス (25年中投与開始)
Epigenic	2022	シリーズB (\$60M, 2025)	dCas+editor x LNP	EPI-001 PCSK9高コレステロール血症 遺伝子抑制化	中国III

目次


- 1. 2025年3Qのトピック
- 2. 決算状況およびファイナンスについて
- 3. 成長戦略
- 4. まとめ
- 5. Q&A

1. 2025年第3四半期のトピック

パイプラインの状況

MDL-101を中心とした神経筋疾患にフォーカスして開発

^{*1:} LAMA2-related congenital muscular dystrophy = 先天性筋ジストロフィー1A型。

^{*2:} Myotonic Dystrophy Type 1 =筋強直性ジストロフィー1型

^{*3:} Duchene Muscular Dystrophy (デュシェンヌ型筋ジストロフィー)

^{*4:} facioscapulohumeral muscular dystrophy =顔面肩甲上腕型筋ジストロフィー

^{*5:} Dilated Cardiomyopathy 拡張型心筋症

LAMA2-CMD (別名:CMD1A, 先天性筋ジストロフィー1A型)

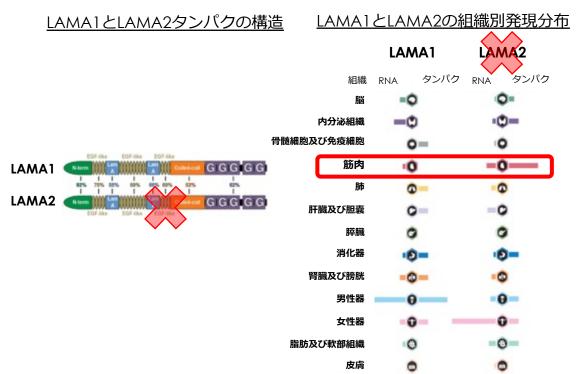
LAMA2 遺伝子の変異によって生じる重篤な筋ジストロフィーの一種

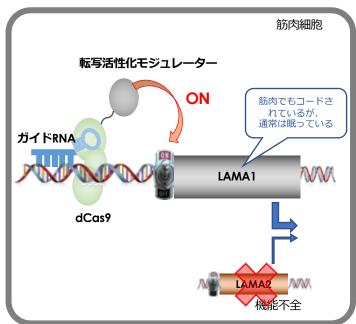
Source: *Estimating the Prevalence of LAMA2 Congenital Muscular Dystrophy using Population Genetic Databases (2023)

LAMA2-CMD

昨年の1月にインドで生まれた女の子。 生後間もなく筋力低下を認め

生後向もなく助力低下を認められ、遺伝子診断の結果、 LAMA2-CMDと判明

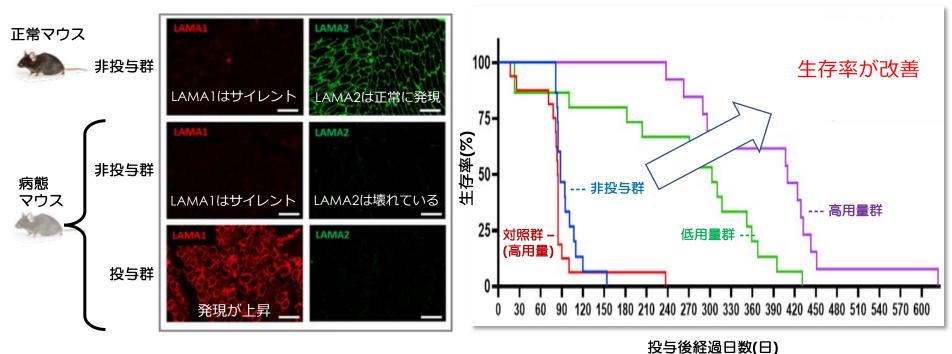



ブラジルの2歳の女の子 当社MAオフィスを訪問

CRISPR-GNDM®の作用メカニズム

LAMA2 の変異に対して姉妹遺伝子の LAMA1 をオンにすることで筋肉の機能回復を行う

CRISPR-GNDM® での治療コンセプト


Source: モダリス社公表資料

生存延長に対する効果

MDL-101の投与によって、LAMA1が発現し、生存率は大幅に改善

病態モデル(DyW)マウスの骨格筋(GC)におけるLAMA1/2の発現

病態モデルマウスの生存曲線

Source: モダリス社公表資料

筋肉選択的キャプシド

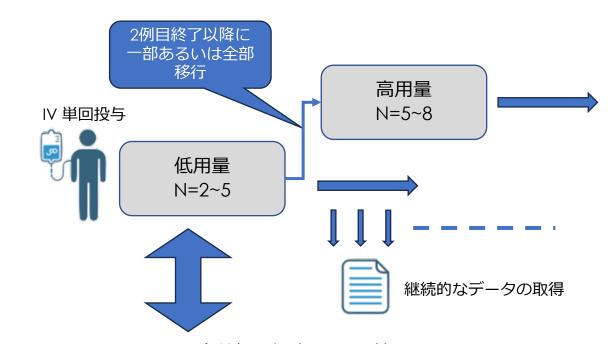
ブロード研とMYOAAVキャプシドに関するライセンス契約を締結(2025年7月)

- 優れた筋肉選択性を有する改変キャプシド
 - 効果の増大 and/or 用量の低減(=安全性の向上)を実現
- 当社で独自に製造法を確立
 - 実用的な収量と品質を実現
 - スケールアップも完了
 - CDMOにてGMP製造に向けて製造を実施中
- 合理的な範囲内でのライセンス条件
 - 進捗に伴ってモダリスがブロード研にライセンス料を支払い

製造の状況

プロセス開発を経て、GMP製造を実行中

- 改変型キャプシドに適応した製造プロセスを 確立
 - 合理的な生産効率、収率、品質を実現
 - 分析方法の確立も並行して実施
- Engineering製造を完了。合理的な生産性と 品質を確認。
- ベクターのためのプラスミドのGMP製造完了
- 用量の低下 x 生産効率の向上によって、大幅 な患者あたり製造コストを低減



MDL-101-001 臨床試験のデザイン

2用量のオープンラベル試験。自然経過観察試験との比較で薬効を検討

フェーズ1/2 オープンラベル用量漸増試験の概要

- 36ヶ月齢あるいはそれ以下の患者(男女)
- 病態およびLama2遺伝子の変異 and/or 筋肉におけるLAMA2 タ ンパク量の顕著な低下
- ・ 治療上における安定期
- 自律的歩行や座位が困難

Natural History Study(自然経過観察)との比較 (NCT06354790, NCT04299321, NCT06132750)

治験に向けた調整

治験サイトの選定が進行中

- USを含めた2カ国で治験候補サイトの インタビューを実施
- 治験サイトの選定を進めるとともに、 臨床試験デザインの調整を実施
- 申請パッケージの作成に向けたフレームワーク構築を実施中

MDL-101のまとめ

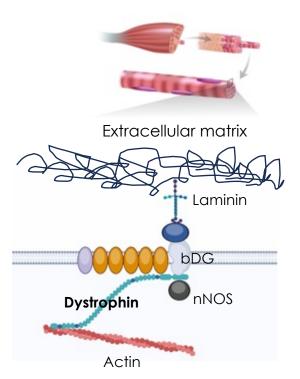
MDL-101は治験に向けてGMPおよびIND-enablingを遂行中

製造

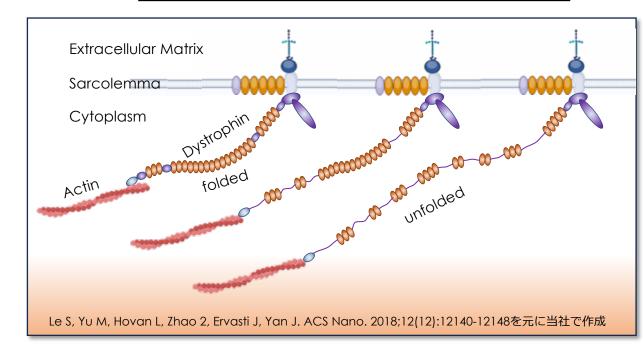
- **✓ Engineering製造を完了**
- ✓ Plasmid GMPの完了
- AAV GMP製造の準備中
- · GLP毒性試験
 - マウスIND enablingに着手
 - サルGLP毒性試験に着手
- 治験に向けた患者団体とのコーディネーションを 実施中
- ・ 治験サイトの選定および準備中

Duchenne型筋ジストロフィー(DMD)

Dystrophin遺伝子の変異を原因とする筋ジストロフィー

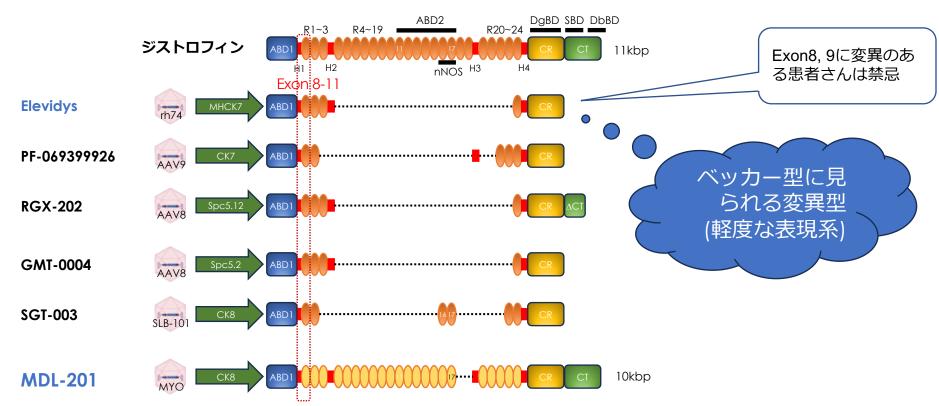

MDL-201	罹患率	3,500~5,000人 の 男子新生児に1人	比較的頻度の高い遺伝性疾患
GNDMによりUTRN遺伝子 を再起動させることによる 治療法でベストインクラス となり得る治療	発症	3歳から6歳 の間に発症することが多い	
	病態	筋肉の減退及び萎縮を含む筋ジストロフィーの中で最も重い臨 床症状	幼児期に運動発達の遅れが始まり、筋力低下が進行して12歳までに車椅子になる。その後、心筋症や側彎の進行、呼吸器系の合併症など
Bas <mark>al lamina</mark> Dystrophin Laminin (ジストロフィン)	原因	Dystrophin 遺伝子の変異及び 欠失	遺伝子の変異により、ジストロフィンが 欠損し、筋肉の壊死・再生という組織学 的な異常発生
Actin	市場規模	\$1.1B * 2022年	新しい治療薬の上市などの期待から CAGR=42.5%で成長するとの予測

Source: *research and markets

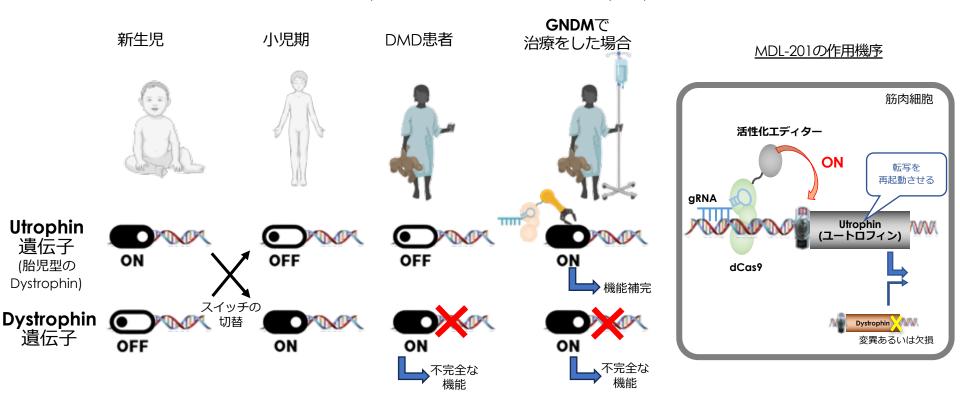

ジストロフィンの機能

筋肉の衝撃吸収材かつ信号伝達分子として機能

<u>ジストロフィンはどこにあるか</u>

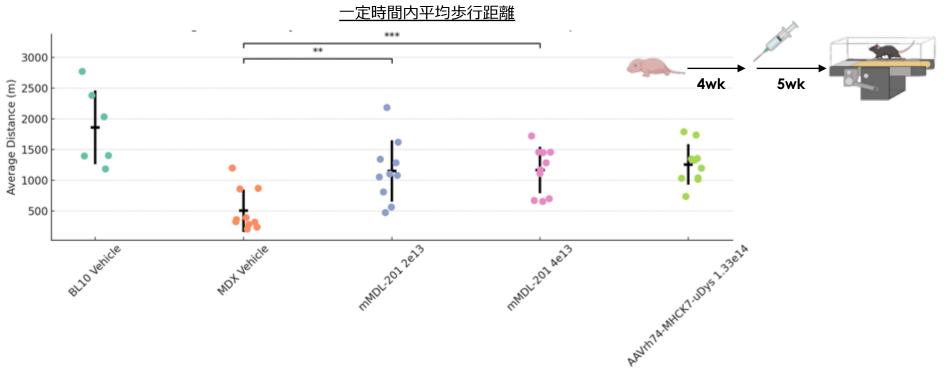

ジストロフィンは伸び縮みして細胞膜とアクチンを連結する

競合他社のマイクロディストロフィンの構造

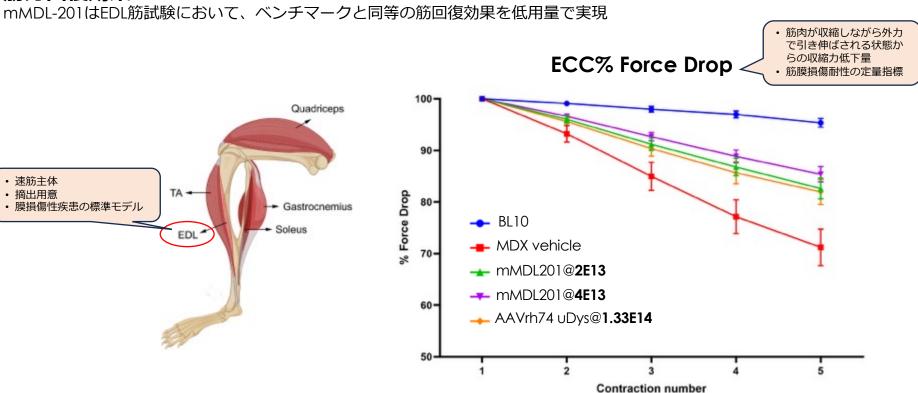

サイズ上の制約があるために、ベッカー型患者由来の小型ジストロフィンを使用

<u>ジストロフィン、ユートロフィン、マイクロジストロフィンの構造</u>

MDL-201 の治療コンセプト


成長の過程でスリープモードに入っているUtrophin遺伝子を再起動して、異常Dystrophinの機能を補完する

GNDMによるUtrophinの活性化はミニDystrophinによる補完よりも優れた薬効を示す可能性が示唆されている


MDL-201による機能改善

MDL-201はベンチマーク薬剤と同レベルの薬効を1桁下の用量で実現

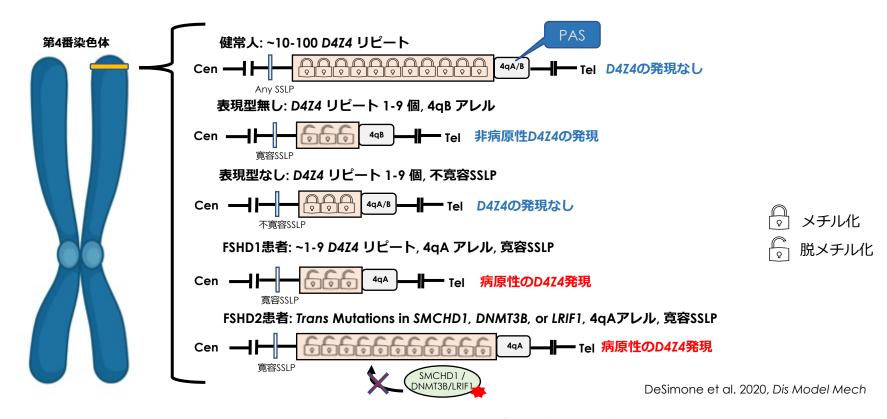
データは平均 ± SEM で示されています。すべての治療群において、シャピロ・ウィルク検定を用いて正規性を評価しました。正規性検定後、BL10 Vehicle と MDX Vehicle 群の間で A と B の両群について、対応のない t 検定を実施しました(### p<0.001)。非パラメトリックANOVA(Kruskal-Wallis検定とDunnの事後検定を用いた多重比較)を用いて、すべての治療群をMDX Vehicle群と比較しました(**p<0.01; ***p<0.001)。

筋力回復効果

EDL: Extensor Digitorum Longus:長趾伸筋

N=5 in BL10 Vehicle, N=9 in the MDL201 4.0E13 treatment group, and N=10 in all other groups, **study week 11 (15 weeks of age)** ECC(Eccentric Contraction:伸張性収縮)%force drop = ((ECC1-ECC5)/ECC1)*100

顔面肩甲上腕型筋ジストロフィー(FSHD)


Dux4遺伝子を原因とする神経変性疾患

MDL-103	罹患率	約1万-2万人に約1人	成人で最も頻度の高い筋ジストロフィー
傷害性のあるDux4遺伝子産物の発現を抑制することでファーストインクラスとなり得る治療	発症	20代まで認識されないことが 多く、青年期に悪化する傾向	成人発症型と小児発症型に分ける専門家 もいる。成人発症型の方がはるかに一般 的である。
眼輪筋 口輪筋 一大胸筋 上腕二頭筋	病態	顔面(目&口)、肩、上腕、 手首、下腹部等の筋力低下	顔面、肩、腕と病態は進行一般的に病態 の進行は遅い 非対称(アンバランス)な筋力低下の症 状が見られる 筋力低下の範囲が広がることがある 視力障害、血管異常、聴覚障害など
腹筋	原因	DUX4遺伝子の過剰発現	常染色体優勢遺伝, FSHD1(95%) 、2(5%), DUX4は本来生殖細胞で発現、体細胞で は抑制
脛骨筋	市場規模	\$500M以上 2022年	

Source: https://doi.org/10.1212/WNL.000000000011425 Orphanet, Raymond A. Huml MD A concise guide

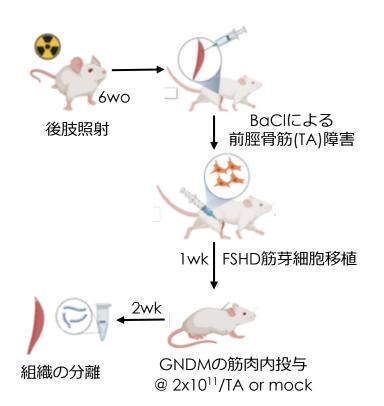
FSHDの病態メカニズム

骨格筋における毒性のあるDux4の異常発現

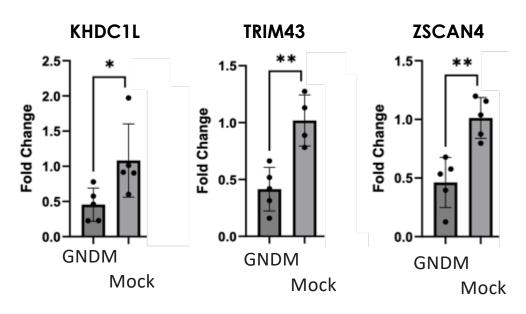
SSLP: Simple Sequence Length Polymorphism(遺伝子多型) PAS: polyadenylation signal (ポリアデニル化シグナル)

SOLVE FSHD-Sponsored XPRIZE Healthspan Bonus Prizeに続いてSOLVE FSHD本体からも 研究開発助成が決定

"I prefer not to sit in the stands, but to be on the court to solve this disease that is so very close to my heart."


「私はスタンドに座るよりも、この 私の心に深く刻まれた病気を治すた めにコートに立つことを望んでいま す。し

Chip Wilson Founder of SolveFSHD and Lululemon


- リードgRNAの選択を行 い、特許を申請中
- FSHD治療薬開発を目指す MDL-103を再起動
- •大学等研究機関とともに 動物モデルによる検証を 経て、臨床試験を目指す

31

DUX4下流遺伝子はGNDMによって抑制された

異種移植されたTAにおけるDUX4標的遺伝子の発現

- N=5 hRPL13Aで正規化
- ・ 統計的有意性はDunnett検定を伴う一元配置分散分析(ANOVA) により判定

パイプラインの状況と今後のマイルストーン

MDL-101のINDファイリング目標を2026年期央に設定

パイプラインの状況

*予定されるマイルストーンイベントは将来情報であり、状況に応じて変更される可能性があります。

主な進捗と今後予定されるマイルストーン

	これまでの進捗	今後予定されるマイルストーン
MDL-101 LAMA2-CMD	 ✓ マウス病態モデルでのPoC ✓ サルにおけるターゲットエンゲージメント ✓ Pre-IND実施 ✓ プラスミドのGMP製造完了 ✓ ODD and RPDD受領 ✓ データプレゼンテーション(SciFam2026(8 月), 第6回ゲノム編集サミット(9月)) 	 マウスIND enabling(実施中) GLP-Tox (実施中) GMP製造(AAV: 実施中) IND (mid 2026) FPFD(late 2026)
その他	✓ 動物モデルにおけるPoCを確立 ✓ MDL-201 (DMD), 追加の薬効確認 ✓ MDL-202 (DM1) ✓ MDL-104 (タウオパチー) ✓ MDL-205 (エンジェルマン症候群) ✓ MDL-207 (ドラベ症候群) ✓ MDL-103 (FSHD): xPrize, SolveFSHDから助成金受領, 病態モデルでの薬効確認 ✓ JCRとのCNS領域で共同研究開始 ✓ Ginkgo Bioworks, GenixCure社との提携	 201の追加リードアウト 筋疾患および中枢神経プログラムに最適なキャプシドの探索と投与ルートの検討 パートナリングや助成金等による開発資金の手当て 動物モデルにおけるPoC確立 研究の継続と次のマイルストーンの達成

知財の状況

MDL-103および104関連特許がそれぞれ日本で登録

- ・ 顔面肩甲上腕型筋ジストロフィー (FSHD)の治療方法に対するDUX4遺伝 子を標的とした治療法に関する特許 (特許第7736329号)が日本登録(9月)
- アルツハイマー病をはじめとするタウオパチーに対して、タウタンパクを標的とした治療法に関する特許(特許7749244号)が日本登録(9月)

論文掲載および学会発表

MDL-101の前臨床データを2つのカンファレンスで報告

直近の報告

 2025 Scientific & Family Conference, Congenital Muscular Dystrophy/Nemaline Myopathy/Titinopathy (2025 SciFam)

"Epigenetic Editing with CRISPR-GNDM®: MDL-101 is a Muscle -Tropic AAV Vectors for the Treatment of LAMA2-CMD" 2025 年 8 月 4 日

 第6回ゲノム編集治療サミット(the 6th Genome Editing Therapeutics Summit)

"Movement Toward the Clinic: Preclinical Development of Gene Activation programs with CRISPR-GNDM®" 2025 年 10 月 1 日

2. 2025年12月期 第3四半期末の 財務状況

2025年第3四半期末 財務状況(貸借対照表)

2025年以降の事業に向けて必要な一定水準の現金および預金を維持

(百万円)

	2024年12月期 (A)	2025年12月期 第3四半期 (B)	差異 (B)-(A)
流動資産	3,617	3,354	△262
現金及び預金	3,575	3,307	△267
固定資産	74	68	△5
資産合計	3,691	3,423	△268
流動負債	117	675	558
固定負債	26	53	27
負債合計	143	729	585
純資産合計	3,548	2,693	△854
負債純資産合計	3,691	3,423	△268
自己資本比率	95.5%	77.7%	

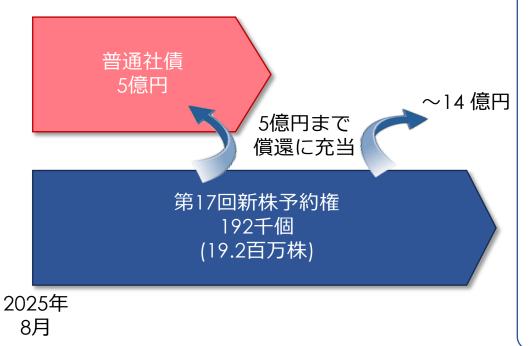
NOTE

・新株予約権の行使があるも、費用増加により現金及び預金が減少、社債、未払金の増加により流動負債が増加

2025年第3四半期末 財務状況(損益計算書)

MDL-101プログラムの臨床試験に向けた活動費用が主なものとなり、事業費用1,815百万円を計上

(百万円)

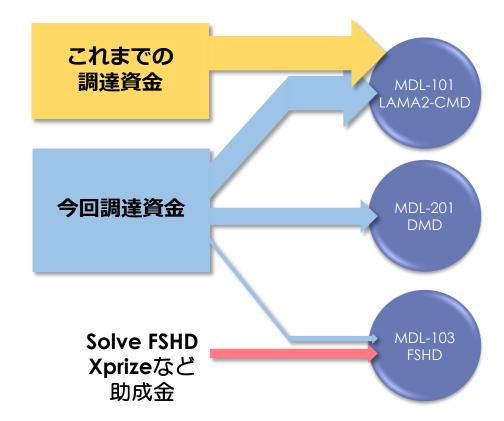

	2024年12月期 第3四半期 (A)	2025年12月期 第3四半期 (B)	差異 (B) - (A)
事業収益	-	-	-
事業費用	1,062	1,815	752
研究開発費	882	1,632	750
販管費	180	182	2
営業利益	△1,062	△1,815	△752
経常利益	△1,059	△1,798	△739
当期純利益	△1,060	△1,801	△741

<u>NOTE</u>

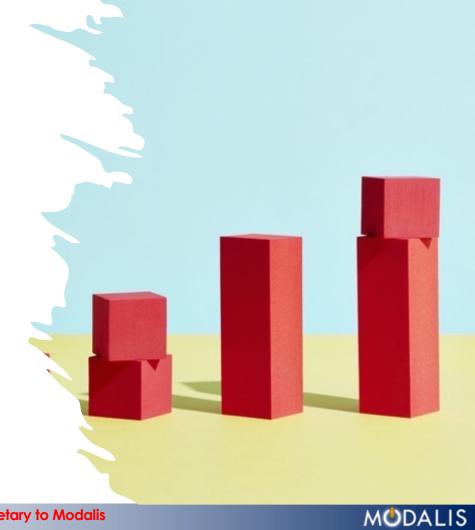
- SOLVE FSHDとの戦略的提携に基づく契約金とXPRIZE Healthspanの獲得賞金による営業外収益を計上
- MDL-101 の臨床試験へ向けた前臨床試験および治験薬製造等の進捗に伴い費用 が増加

新規資金調達のスキーム

普通社債5億円と新株予約権192千個で構成される想定総額約14億円の調達



- MDL-101の追加資金
- MDL-201の開発費
- MDL-103他後続パイプランの研究開発費
- 事業運営費


開発資金の使途

MDL-101に加えて、MDL-201および103にも投下し開発を推進

- 調達資金は前回調達した資金と合わせてMDL-101の前臨床および臨床PoC実現の資金として利用
- 加えて大型パイプライン候補となるMDL-201の開発資金にも投下
- さらに外部助成金と合わせ てMDL-103の開発推進にも 利用

3. 成長戦略

3段階のミッションを持ったパイプライン群で可能性を最大化

技術への親和性の高 い疾患で PoC を取得

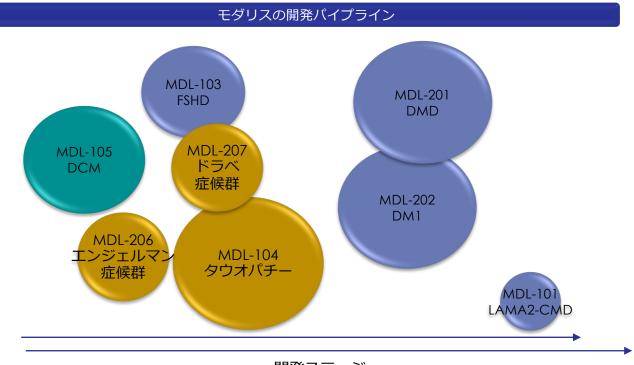
MDL-101

患者規模の大きい 対象疾患へと展開

> MDL-201 MDL-202

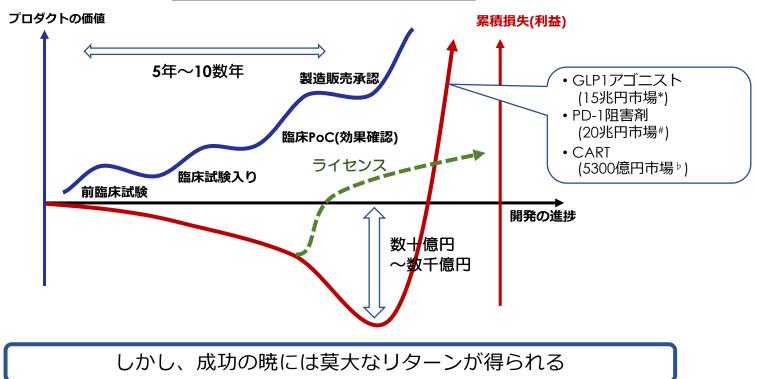
よりチャレンジング な テーマへ拡大

その他のプログラム



開発パイプラインと市場規模のイメージ

MDL-101 で作る開発実績を、201、202などの大型パイプラインが追いかける

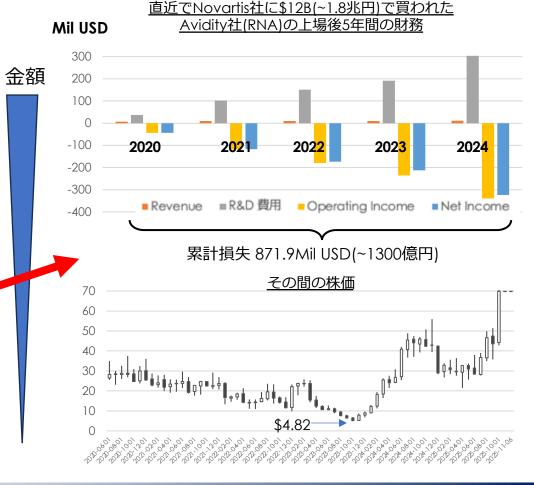

開発ステージ

※ 円の大きさは患者数あるいはそれに伴う市場規模のイメージ

バイオテック企業の企業価値と累積費用の推移イメージ

上手く行けば行くほど、お金がかかるのが医薬品開発

パイプライン価値と累積開発費のイメージ


Source: *岡三証券 "世界が熱狂する肥満症治療薬" *SkyQuest Industry forecast2023-2030 b Report Ocean "CAR T-CELL THERAPY MARKET BY DRUG TYPE"

何を期待してバイオ株を買うべきか?

出口は必ずしも製品上市ではない

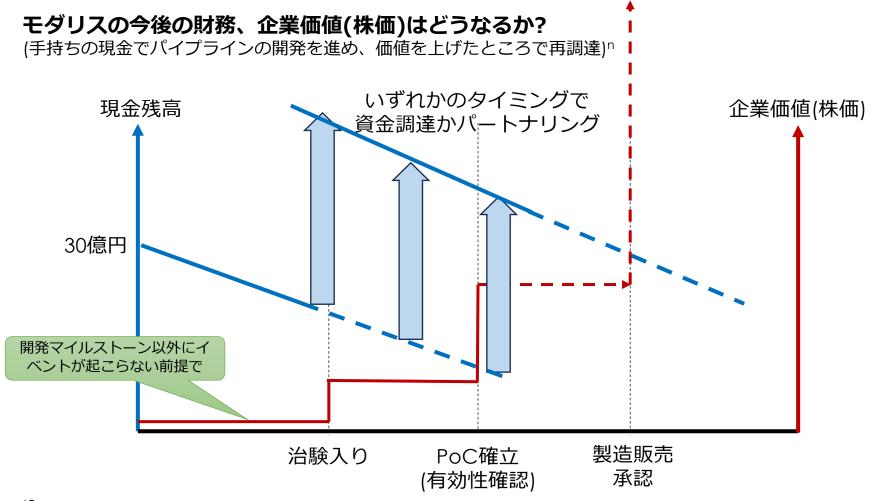
可能性

- 1. 最終的に製薬会社になって継続的な売上げを伴う成長をする
- 2. 製品を上市し、大手製薬会社 に買収される
- 3. 製品の上市の可能性が高まり、 大手製薬会社に買収される
- 4. プロダクトのPoCが取れて 薬効が示され、期待値から大 手製薬会社との提携あるいは 買収に至る

パートナリング or 資金調達 に関する考察

パートナリングは株数の希薄化はおこらないが、利益の希薄化がおこる

パートナリング はこちらを毀損 する


Σパイプライン価値 x 自社の取り分

1株あたりのリターン(価値) =

発行済株式数

新株発行による 調達はこちらを 毀損する

開発にはお金がかかるので、なんらかの方法で手当は必要

4. まとめ

2025 3Qのキーポイント

- 1. MDL-101のIND目標を2026年期央に設定
- 2. MDL-201では他のパラメターにおいてもベンチマーク薬剤を越える有効性を確認
- 3. 動物モデルでMDL-103の有効性を確認
- 4. MDL-103と104の特許が日本で登録
- 5. 臨床に向けて体制を強化。昇格に加えて外部から追加で人材を招聘。

モダリスには大きな成長可能性がある

- ・ MDL-101の確かな効果と臨床試験に向け た着実な進捗
- ・ MDL-201やMDL-103など市場の大きい後 続のプログラムの進捗
- ・当面の開発資金の充足

MODALISのバリューハイライト

CRISPRを用いた**エピゲノム編集**に基づく治療薬開発に企業として世界で最初に取り組み、CRISPR-GNDM®プラットフォームで世界をリード

複数の動物種(齧歯類および霊長類)において、**長期にわたる発現制御と機能改善**を安全性を維持しながら実現

前臨床段階にある神経筋疾患パイプラインの他、中枢神経疾患や心筋症など拡張性のあるターゲット領域

難易度の高いAAVに対して製造法を確立し、組織選択的なデリバリー法を実現

エピゲノム編集プラットフォームに精通した経験値の高いチーム

ライセンス特許を含む複層的な**知財ポートフォリオ**

FDAなど当局との対話を通じた明確化された臨床試験までの道筋